Straightforward intermediate rank tensor product smoothing in mixed models
نویسندگان
چکیده
منابع مشابه
Straightforward intermediate rank tensor product smoothing in mixed models
Tensor product smooths provide the natural way of representing smooth interaction terms in regression models because they are invariant to the units in which the covariates are measured, hence avoiding the need for arbitrary decisions about relative scaling of variables. They would also be the natural way to represent smooth interactions in mixed regression models, but for the fact that the ten...
متن کاملLow-rank scale-invariant tensor product smooths for generalized additive mixed models.
A general method for constructing low-rank tensor product smooths for use as components of generalized additive models or generalized additive mixed models is presented. A penalized regression approach is adopted in which tensor product smooths of several variables are constructed from smooths of each variable separately, these "marginal" smooths being represented using a low-rank basis with an...
متن کاملTensor rank is not multiplicative under the tensor product
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an `-tensor. The tensor product of s and t is a (k + `)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general...
متن کاملOptimal Smoothing in Nonparametric Mixed-Effect Models
Mixed-effect models are widely used for the analysis of correlated data such as longitudinal data and repeated measures. In this article, we study an approach to the nonparametric estimation of mixed-effect models. We consider models with parametric random effects and flexible fixed effects, and employ the penalized least squares method to estimate the models. The issue to be addressed is the s...
متن کاملA Note on Tensor Product of Graphs
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2012
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-012-9314-z